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Abstract

The paper deals with the evaluation of linear elastic stress fields in the neighbourhood of U- and V-shaped notches in
plane plates. The main aim is to improve the accuracy of an approximate solution already proposed in the literature by
changing the polynomial arrangement of complex potential functions and properly adapting the boundary conditions.
In some special cases, the solution matches Williams, Westergaard-Irwin and Creager—Paris’ equations universally used
in the case of sharp corners, cracks, and blunt cracks, respectively. In the presence of notches with a tip radius different
from zero and a large opening angle, the equations obtained are compared with finite element results, showing a very
good agreement. Due to their reduced complexity, such equations turn out to be particularly useful when applied
to rounded V-notches as well as welded-like geometries under mixed loading conditions. Finally, some limits of the
solution when applied to the notch free edges are highlighted.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The knowledge of the whole stress—strain field close to the notch tip, and not only the peak stress value,
is particularly useful in mechanical design since it can help to evaluate properly the geometrical effects on
the strength of components, principally when their fatigue behaviour is concerned.

For the linear elastic analysis of plane cases, conventional approaches have been soundly established
since Kolosov (1909) and Muskhelishvili (1953), and Neuber (1958), who used complex potential functions
and bi-harmonic potential functions, respectively. As far as sharp notches are concerned, main contribu-
tions have been the crack solution due to Westergaard (1939) and Irwin (1957) and the sharp V-shaped
notch solution due to Williams (1952). Blunt cracks, i.e. slim parabolic notches, have been dealt with by
Creager and Paris (1967), and then by Glinka (1985) who was able to give a closed-form expression to the
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generalised stress intensity factors (SIF) in Creager—Paris’ equations. In the close neighbourhood of the
notch tip, where stress distributions mainly depend on the notch tip radius, such equations continue to be a
very powerful tool.

More recently, Lazzarin and Tovo (1996) gave a solution dealing with sharp and rounded V-notches, the
crack and the blunt crack being particular cases of the unifying solution capable of addressing any com-
bination of notch tip radius and opening angle. Afterwards, Lazzarin et al. (1998) extended that approach
in order to take into account also the influence of plate finite size on the stress fields. Other formulations
already reported in the literature (Glinka and Newport, 1987; Xu et al., 1995; Kujawski and Shin, 1997),
and focusing mainly on the maximum principal stress distribution along the notch bisector, have already
been discussed (Lazzarin et al., 1998; Atzori et al., 1997).

As already stated by the authors, the approximated formulas provided by Lazzarin and Tovo (1996)
showed a lack of accuracy in describing the stress field due to rounded V-shaped notches with a large
opening angle. However, since such a type of geometry had not been previously described by any other
analytical solution, the progress given by that proposal appeared to be substantial.

This paper aims to improve greatly the accuracy of the past solution and to extend its range of appli-
cability, avoiding excessive complications in the stress field expressions. By so doing, the new expressions
are considered feasible for cases of engineering interests.

Finally, the paper aims to clarify the limits of applicability and the degree of accuracy of stress ex-
pressions when applied to notches under mixed loading conditions, with particular emphasis on the pre-
dictions valid for notch free edges.

2. Previous solution

The case investigated in the present stress analysis is the round open notch sketched in Fig. 1 together
with the frame of reference and the stress component definitions.

The old solution (Lazzarin and Tovo, 1996) adopted, according to Kolosoff-Muskhelishvili’s method,
two analytical potential functions:

o(z) = az’, W(z) = bz* 4 cz" (1)

where coefficients a, b and ¢ were complex, exponents 4 and u were real, with 2 > 0 and A > p. When c¢ is
null, the approach matches Williams’ solution (Carpenter, 1984a).
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Fig. 1. Coordinate system and symbols used for the stress field components.
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Fig. 2. Auxiliary system of curvilinear coordinates (u,v).

The boundary conditions were imposed on an auxiliary system of curvilinear coordinates u and v, the
relation with the Cartesian coordinates x—y being as follows (Fig. 2):

x+iy= (u+iv)? (2)

In Eq. (2) “¢g” is a real coefficient ranging from 1 (flat edge) to 2 (crack). The curve defined by u = 0 de-
scribes an angle equal to 2a, related to “¢” by the expression

20=n(2 —gq) (3)

The chosen free edge approximating the investigated geometry is the curve u = uy and its notch tip radius is
related to u, by means of

q
qu, qro
= = 4
P=u—1 q-1 4)
The free edge condition requires that ¢, and 7,, stress components should be zero along the whole edge, that
is

(G”)u:uo = 07 (Tll”)u:uo =0 (5)

Due to the reduced number of free parameters and the particular choice of potential functions given by Eq.
(1), the boundary conditions could be completely satisfied only when the null notch tip radius is null, i.e. in
the corner case (Williams, 1952). Elsewhere the boundary conditions were simplified by ensuring that Eq.
(5) was satisfied in the close neighbourhood of the notch tip and far from it. The resulting conditions were

(Gu) u=utg = (0,) r=ro = 07 (TML') =ty = (Tr(l) r=ro =0 (6a,b)

v=0 0=0 v=0 0=0
Oa, (0o, 2 B 0Ty [0ty 1 B
( v ) umwy ( o0 5”0> — O (E) . ( o0 qw) v =0 (7a,b)
v=0 0=0 v=0 0=0

(O-”) u=u, = 0 = 111’1’1 (rli;&o-()) = 07 (T“U) u=u, = 0 = hm (rli/lrro) = 0 (8a7b)

z:>>vg r—o0 v>>vg r—00
O0—+qm/2 0—=+qmn/2

While Egs. (6a,b) and (7a,b) are obvious, Eq. (8a,b) needs some clarification:
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e At a convenient distance from the notch tip (» = 7) the z* term is negligible with respect to the z* term.
Consequently, Eq. (8a,b) can be written involving only the Z related stress components.

e There exists also a distance (r = 7) at which the 0 = +qmn/2 straight lines departing from the origin of the
coordinate system are very close to the real boundary and, therefore, oy and 7,4 coincide with ¢, and 7,
respectively.

e Since, in general, 7 and 7 cannot be “a priori” defined exactly, the radial distance r is set equal to infinite
in Eq. (8a,b). It turns out that az* and bz* terms are zero for r — oo and 0 = +qm/2.

In the neighbourhood of the notch tip, the profile of a real V-shaped notch is different from the theo-
retical profile given by Eq. (2); however, at the notch tip, both profiles present the same radius of curvature
p. When finite boundaries (or finite geometries) are considered, the analytical equations, corresponding to
the infinite domain, can be efficiently used only when the notch tip radius is small with respect to the notch
depth and the two sides of the notch are represented by straight lines.

It is well known that the stress distributions in the neighbourhood of the tip depend mainly on the notch
tip radius (Xu et al., 1995). The dimension of such a zone was demonstrated to be 0.4 p (Atzori et al., 2001)
in plates weakened by semicircular, semi-elliptic and V-shaped notches (with an opening angle ranging from
0° to 135°), all subjected to mode I load conditions. Outside this region, the influence of the opening angle
becomes evident, and the stress fields induced by rounded V-notches approached closely those of sharp V-
notches (Atzori et al., 2001). This means that the effect of the notch tip radius and the opening angle can be
seen as “‘independent”’.

The results obtained by Lazzarin and Tovo (1996) provided the main trend of stress fields for very
different geometries. However, as already highlighted by the authors, some disagreements were found
between theoretical and numerical results for rounded V-shaped notches, in particular in the zone where
stresses become sensitive to both the notch tip radius and also to the notch opening angle. In such a zone,
the maximum principal stress exhibits a linear trend along the notch bisector when plotted in a double
logarithmic diagram.

As an example, the principal stress along the “ X" direction of a 135° V-shaped notch is shown in Fig. 3.
It is evident that, at distances from the tip comparable with the notch radius, the analytical curve and the

o FEM
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Lazzarin-Tovo, 1996
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Fig. 3. A comparison between numerical and analytical results along the notch bisector.
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numerical values (coincident at the tip) have the same slope and that such a slope depends on the opening
angle. On the other hand, there is a small gap between the two estimations and this inconsistency obviously
affects the accuracy of the formulation. Fig. 3 also shows that it is not possible to neglect the influence of the
notch opening angle ahead of the notch, as could be done by improperly using Creager—Paris’ equations.

3. An improved solution for stress distributions

With the aim of improving the accuracy of the analytical solution, the previous approach has been
modified. The lack of correctness seems to arise close to the notch tip, where terms with the exponent “u”
give a significant contribution. The basic idea is to achieve greater precision by adding more factors, and

then more flexibility, to the part of the equations with exponent “u”.
By adding a term to the first of the two analytical functions, they become

¢(z) = az" + dz", W (z) = bz* + cz" 9)

Then, the general expressions of stress components turn out to be:

oo = 2r* a; (1 4 2) cos(1 — 2)0 + by cos(1 4+ A)0 + ay(1 + A) sin(1 — 2)0 — by sin(1 4 2)0)]
+ M dy (1 + p) cos(1 — )0 + ¢y cos(1 + )0 + do(1 + p) sin(1 — )0 — c; sin(1 + p)0] (10)

o, = A" a3 = 2)cos(1 — A)0 — by cos(1 + 2)0 + a»(3 — A) sin(1 — 1)0 + b, sin(1 + 1)0]
+ w* M di (3 — p) cos(1 — )0 — ¢y cos(1 + )0 + dr(3 — w) sin(1 — p)0 + > sin(1 + p)0] (11)

9 = A" Hay (1 — 2)sin(1 — 2)0 + by sin(1 4+ 2)0 — ay(1 — A) cos(1 — 2)0 + by cos(1 + 1)0]
+ urMdi (1 — p) sin(1 — p)0 + ¢; sin(1 + )0 — dy(1 — p) cos(1 — u)0 + ¢z cos(1 + p)0) (12)

where indexes 1 and 2 denote the real and imaginary part of constants, respectively.

Note that, as in the previous solutions, the stress field distribution will turn out to be singular at the point
z = 0; however, this point is outside the bounds of the physical domain, so that we can completely disregard
the singularity.

It is noteworthy that this choice of a potential function is actually obtained by doubling the one already
suggested by Williams (1952). Moreover, the stress functions chosen are linearly related to the added
constant “d”’, so that the equations have not been made substantially more complex.

Each parameter must be determined by imposing the boundary conditions, which are those given by Eq.
(5). Even in this case they cannot be satisfied along the whole free edge and must be somehow simplified.

Being (—0/q) the angle included between the principal directions of the polar and the curvilinear systems,
the components of the stress field in the (u,v) curvilinear system can be now derived from (10)-(12) by
imposing the local rotation of the reference system previously defined (Lazzarin and Tovo, 1996):

—1( + )+1( )00829 sinze
0, = P Oy Gy 2 (5 g9 q Tro q
1 1 20 . 20
o, :5(0,—1—00)—E(o—,—ag)cos;—kmsm; (13)
T *1(6 —a)sinz—eJrr oS —
uv*2 r 0 q r0 q

Eq. (8a,b) in ¢, and Eq. (8a,b) in 7,, give the same homogeneous system conditions proposed by Williams
(1952) for V-crack.
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(14 2)cos [(1 = 2)g%] cos [(1+ 2)g%] 0 a
(1 —2)sin [(1 = 2)g%]sin [(1+ 2)q%] b
. (14 2)sin [(1 = 4)g%] —sin [(1 + 2)qZ] a

q
(1 —2)cos [(1 —2)g%] —cos [(1+ A)g%] by

(14)

S O o O

Solutions are not trivial only if the two uncoupled determinants are equal to zero. This leads to the fol-
lowing equations for A:

sin(4,¢m) + 4; sin(ng) =0 (Mode I) (15)

sin(4,gm) — Ay sin(ng) = 0 (Mode II) (16)

In general, Egs. (15) and (16) can give n-solutions or eigenvalues. The problem being linear, the general
solution can be given as a linear combination of all particular solutions (Williams, 1957; Carpenter, 1984b,
1985); however, the state of stress and displacement near the corner is dominated by the first eigenvector so
that only the eigenvalue with the lowest modulus have been considered in our analyses.

By excluding for the moment the zero opening case, parameters b; and b, can be given as a function of
the undetermined coefficients a; and a,. For the symmetric problem, denoted by index 1, one obtains

b1 :}{bl(l —/ll)al (17)
where

o osin[(1 = Ay)gn/2]

o= Sinl(1+ Jy)qm /2] (18)
The skew-symmetric problem results in:

bz = —sz(l + /12)612 (19)
where

sin [(1 — Z,)gm/2

“sin[(1+ 4y)gm/2)

For the zero opening or crack problem, all the terms of the coefficient matrix of (14) are zero for those
eigenvalues which make the determinant zero and there are two coefficient associated with each eigenvector
(Carpenter, 1984a,b). However, the first and the second eigenvalues are equal and the related eigenvector is
associated to two coeflicients related to mode I and II fracture (as clearly stated by Carpenter (1985)).
Hence, also in this case, the first symmetric and the first skew-symmetric eigenvector are defined except for
a single constant.

Dealing with the remaining constants and parameter evaluation, it is necessary to note that, compared
with the conditions imposed in (Lazzarin and Tovo, 1996), additional conditions must be used due to the
increased number of free parameters. The former condition has to deal with the symmetric part of the
problem, the latter with the skew-symmetric one.

It has been chosen to demand the zero traction condition also on the “u”” components far away from the
tip. Such a condition has been imposed on ¢, and t,, stress components in the following way:
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(02) oy, +(0),,, =0= lim (F"op)+ lim (" a5) =0 (21)
v =0 >0 OquOOn:/Z 0:1;;/2

(Tuw) vy, (Tuw) = 0= Ilim (r'*14)— lim (+'*79) =0 (22)
vt vt 0¥ qn)2 i)

Differently from the assumptions given by Eq. (8a,b), which have been used to determine four free
parameters for the A components, in the new solution only two added parameters in the u components are
actually free, i.e. d; and d,. Then, only two additional boundary conditions are required. Hence the “far
away’’ conditions given by Egs. (21) and (22) on the ¢ components have to be reduced, in contrast to what
has been done with the Eq. (8a,b). Specifically, it has been chosen to force to zero the symmetric part of the
tensile stress (that is mainly involved in symmetric loading) in Eq. (21) and only the skew-symmetric part of
the shear stress field in Eq. (22). By applying now the stress field expressions (10)—-(12) to the free-edge
conditions (6a,b), (7a,b), (21) and (22), a new explicit set of equations can be derived.

Consider now the symmetric solution only. By introducing Eqgs. (10)—(12) into Egs. (6a), (7b) and (21)
one obtains the parameters p,, ¢, d;

J~1r31-1<3—11 —%) + ! {(3—;41)5—1—:—1] =0 (23)

Jyrp! {(1 — ) +%(1 + z,)} + ! {(1 —~ ul)zj—i+:—1(1 +u1)} - ézlrgﬂ {(1 + 1) +’;—ﬂ
Tl (RN (24)

L1+ m)cos [(1= a3 |+ cos (14 m)g3] =0 (25)

Note that Egs. (23)—(25) are linearly dependent on the indexes ¢; and d), so they are not significantly more
complex than the corresponding equations in the old solution. By using Egs. (23) and (24), the parameters
¢, and d; are obtained as

21—

g1y

=7 2
T g - 29)
A=

_qhiry .

g 27
where the auxiliary indexes y,,, x,, are as follows:
1

o= 0= = 04| (6= 2) = 2,1 = 0] = 3= ) (28)

1 —q(1+
Yo, = {‘I(C[“l)} 3= 1 — 2 (1= 21)] — & (29)

being

1 1 ,
& = (1 — /11)2 +Xb1(1 _;\‘2) _;(1 +)h1) _gxbl(l —Al) (30)
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The exponent p, is given by the implicit solution of the following equation:

(P2 B e, ()] = a0 s [(1 = a3 ]+ {1 = = 20
X[3= =g (1= )] - 3 m} 1+ m)g%] =0 (1)

When the notch radius is equal to zero, the distance r is null. Then ¢; and d, are also null (see Egs. (26) and
(27)) and the equations for stresses simplify.

The skew-symmetric part of the problem, denoted here by index 2, can be dealt with in an analogous
way. By introducing Egs. (10)—(12) into the boundary conditions Egs. (6b), (7a) and (22), one obtains

) b _ d
Azrdz1(_1"‘/124'—2)4-#2”821{_(1_.“2)_2"‘2}: (32)
a; a a
) ael ) N -1 d> I
2aky’ (l—ﬂz)(3—)»2)+(1+ﬂz)a_ +wory” (=) (3 — ) —+ (1 + pp) —
2 ay ap
2. \ by 2 d o
— = | = (1= = ==y | = (1 —p)—=+—=|=0 33
p 2Fy { ( Az)JraJ q#z”o { ( ﬂz)a2+a2} (33)
d> T 2 T _
~ (0= m)eos [(1 g | + 52 cos [(14+m)g3 | =0 (34)
The expressions for ¢, and d, are
0 A2l
A2k
CG=———%.4a 35
’ 4#2(#2_1)/{22 (35)
},zr())'z_ﬂz
dy = ————— s, 36
’ 4y (py — 1) 0 (36)
where the required auxiliary coefficients are
) , 2 2
e =03=2)(1 =) —x,(1+4) +5(1 — o) + wz(l + /) (37)
-3)-2
e = = 0| L2222 1) 14 2]+ 0 e (38)
1+ p)—2 ,
Tay = — [%] [A2 = 1=y, (1 + A)] + & (39)
The exponent y, is defined by the following implicit equation:
14+ u,) =2 n —-3)-2
{2 v 2] =0 = ) cos [ 0 - )] + G = [ 222222
) T
% i — 1= g1+ 22)] + (1 - ,uz)gz} cos [ 5 (14 1)] =0 (40)

Egs. (31) and (40) represent a second order eigenvalue problem which is correlated to Williams’ solution.
When the notch tip radius is null, coefficients ¢, and ¢, are also null since ry = 0 and the origin of the
coordinate system coincides with the corner apex.
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The stress components can be written by separating the contribution due to the symmetric solution
(mode 1) from that due to the skew-symmetric solution (mode II).
Stresses due to mode I loading conditions are

ao (I 4+ A1) cos(l — 41)0 cos(1+ 4,)0
o, p=Ar'""ar|{ 3= A)cos(1 —21)0 p + z, (1 — Z1){ —cos(l+ 41)0
Tr (I = Ay)sin(l = 4,)0 sin(1 + 4;)0
o\ (14 ) cos(l — py)0 cos(1 + )0
+j@ﬂ5(%) 24 (3= ) cos(l = )0 b + 7, —cos(l + u)0 (41)
(1= py)sin(l — ;)0 sin(1 4 p,)0

It is worth noting that the 7,y stress component is always null along the notch bisector.
Stresses due to mode II loading conditions are

09 (14 42)sin(l — 4,)0 sin(1 + 4,)0
6, b = dr ey |{ (3= da)sin(1 — )0 b+ 1, (1+ 22)d —sin(1 + 7)0
T0 (I = Ay)cos(l — 4,)0 cos(1 + /4,)0
| PN (1 + pp)sin(l — )0 —sin(l + p,)0
tame () e G-t =)o {4 q sin )0 @)
(I = ) cos(l — py)0 —cos(1 + p,)0

Along the notch bisector only the 7,9 stress component is different from zero.

For computational convenience, all characteristic parameters present in Eqgs. (41) and (42) are given in
Tables 1 and 2 as a function of some notch opening angles.

Egs. (41) and (42) show that the stress components are defined except for constants a; and a,. These
constants can be expressed either as a function of a convenient stress value (the stress value at the notch tip,
for example, coincident with the peak stress value in the case in which only the mode I stress field is present)
or as a function of the notch stress intensity factors (N-SIFs) K; and Kj;.

Notice that the aim of this formulation is to describe the rounded V-notch stress field in the most highly
stressed zones, not the stress distributions in the nominal stress zone. To achieve this task, it is not necessary
to take into account for this type of notch the linear combination of multiple solutions concerning several
eigenvalues or consider several constants “a;”’; mode I and II notch stress fields are both well described
except for a single constant, “a;” and “a,, respectively. If, incidentally, the notch degenerates into a corner,
the stress distributions have to be considered valid only in the close neighbourhood of the apex, where the

Table 1

Characteristic parameters for mode I loading
20 A Hy bl Lel A1
0 0.5 -0.5 1 4 0
/6 0.5014 —-0.4561 1.0707 3.7907 0.0632
n/4 0.5050 -0.4319 1.1656 3.5721 0.0828
n/3 0.5122 —-0.4057 1.3123 3.2832 0.0960
/2 0.5448 —-0.3449 1.8414 2.5057 0.1046
2n/3 0.6157 -0.2678 3.0027 1.5150 0.0871
3n/4 0.6736 -0.2198 4.1530 0.9933 0.0673

5m/6 0.7520 -0.1624 6.3617 0.5137 0.0413
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Table 2

Characteristic parameters for mode II loading
20 2 Hy X2 X2 Laz
0 0.5 -0.5 1 -12 0
n/6 0.5982 —0.4465 0.9212 -11.3503 —-0.3506
n/4 0.6597 —0.4118 0.8140 —-10.1876 —-0.4510
/3 0.7309 —-0.3731 0.6584 —8.3946 —0.4788
/2 0.9085 —-0.2882 0.2189 -2.9382 —-0.2436
2n/3 1.1489 —0.1980 —-0.3139 4.5604 0.5133
3n/4 1.3021 -0.1514 —0.5695 8.7371 1.1362
51/6 1.4858 —-0.1034 —0.7869 12.9161 1.9376

first eigenvector dominates. The smaller the opening angle, the smaller is the region of validity (Dunn et al.,
1997).

With explicit reference to V-notches with a notch tip radius different from zero, finite element analyses
will enable us to define more precisely the degree of accuracy and the range of applicability of the present
equations.

3.1. Evaluation of constant a;

In the presence of a mode I stress field, it is possible to evaluate the relationship between constant a; and
the maximum stress at the tip. It turns out to be

O-max
ay = — (43)
Aarg TH A+ 20+ 2, (1= 20) + [(1+ ), + 70, [{a/4(a = D)} }
Alternatively, the stress field in the neighbourhood of the notch tip can be expressed as a function of a stress
field parameter, mode I N-SIF. Its definition is consistent with the usual SIF definition if the notch radius
and opening angle are both null. For a sharp V-shaped notch, Gross and Mendelson (1972) defined such a
parameter as follows:

K =V2n lrii%(ag)gzorlf'l‘ (44)

As is well known, K; governs the stress field not only for » — 0 but in a finite volume surrounding the notch
tip. Consider a series of fatigue tests in which the depth of a slim notch is kept constant but the stress
concentration factor K; is varied by modifying the notch root. Experimental data demonstrate that initially
the fatigue strength falls rapidly as K, increases, but beyond the critical value K, the fatigue limit of the
notched specimens remains constant despite decreases of p. Smith and Miller (1978) were able to dem-
onstrate that all notches with K, greater than K; behave identically and can be treated like cracks of the
same depth. Under such conditions the choice more convenient is to define Kj on the basis of the stress term
with exponent /4 of Eq. (41). By so doing, the N-SIF for mode I loading turns out to be

Ky = V211 + 2y + 7, (1 = 2]y (45)

where the constant a; has to be determined at a convenient distance from the notch tip, where the stress
fields of the rounded and sharp notch practically coincide (Atzori et al., 2001).

Otherwise, by a similar procedure, one might include in the K definition the term with exponent u, which
contains a higher order singularity. This alternative choice will be discussed in a next note, where some
interesting properties of a so-defined generalised N-SIF will be discussed in detail.

Eq. (45) makes it possible to state the relationship present between the maximum stress at the tip and the
N-SIF.
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ki= ﬁ{/ (l G $+>”+) T ) } 46)

Along the bisector, expressions for the two principal stresses are as follows:

S (L)M-lu £ 0) 4 1,01 )+ g/ = D)) 4w+ ]
oo = om0 (14 20) + 70y (L= 7a) + (/4 — D} [ 1+ 10) + 7]
(Y T B ) = (U= ) gty ()" 1 B - ) — 2]
o= ) T (1= 70) 3 [t (L 1) + 2] ()

Often in fatigue life predictions of notched components, only the maximum principal stress component is
taken into account. Then Eq. (47) is given here explicitly along the bisector of notches having an opening
angle equal to 0°, 45°, 90° and 135°, respectively.

20 = 0° gmﬁ 03 [(x +0.50) % +0.5p(x + 0.5p) " (49)
20 = 45° % p" 4% [1 0514(x + 0.4286p) "™ + 0.4820p°9% (x + 0.4286p)*1-4319} (50)
200 = 90° ;gﬁ 04555 [1.2976(x +0.3333p) "% 4 0.3957p"5% (x + 0.333p)—‘-3449] (51)
200 = 135° 4"_31*0 pl-3264 {2.040(x +0.2p) 7% 40.2091 "8 (x + 0.2p)*"2198} (52)

It is worth noting that Eq. (49) coincides with Creager—Paris’ equation valid for blunt cracks.

3.2. Evaluation of constant a,

Since the shear stress is null at the notch tip, it cannot be used to determine constant a,. A convenient
choice is to correlate constant a, to mode II N-SIF.
According to Gross and Mendelson definition, mode II N-SIF is

Ky =V2n lirr(}(fr(;)g:orlf12 (53)
Now, by using Eq. (40), such a definition has to upgrade as follows:
KH = —)»2\/ 2TC[(1 — ;Vz) + sz(l — ;vz)]az (54)

4. Accuracy of the new solution

In order to assess the properties and the accuracy of the new equations, it is useful, first of all, to
compare results from the formulas obtained with the results of the most important solutions reported in the
literature. Like the solution proposed in (Lazzarin and Tovo, 1996), the new solution agrees with the
milestones of linear elastic stress analysis of notches, as far as proper geometrical parameters are concerned.
When the notch tip radius is equal to zero coefficients ¢y, ¢,, d| and d; become zero and the solution agrees
with Williams’ solution (1952). On the other hand, when the opening angle is equal to zero, only coefficients
d, and d, are equal to zero and the formulas obtained turn out to be exactly the Creager—Paris’ solution
(1967). Hence when the notch tip radius is also equal to zero, the stress field evaluated is the same given by
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the Irwin close to the crack tip (Irwin, 1957) or, more exactly, the same as given by Westergaard (1939),
since the so called “T-stress’ (parallel to the crack axis) is not present.

The capability of the proposed expression to describe the stress component field has been investigated by
comparing the analytical stress distributions with the numerical results obtained by FE analysis of different
models. Several notched plates have been considered, including lateral notches and internal ‘“squared”
holes; the chosen geometries have been depicted in Fig. 4 and the main geometrical parameters are reported
in Table 3. In this first set of conditions, only mode I stress distribution is investigated, taking advantage of
the geometry and external loading symmetry.

Due to their nature, Egs. (41) and (42) are valid only in stress concentration regions and for notches in
wide plates, namely in plates where theoretically the width and the notch depth can be regarded as infinite.
However, as displayed in Figs. 5 and 6, the accuracy of the equations remains good along the axis of
symmetry also for finite width plates, at least until o, stress field intersects the nominal stress line (evaluated
on the net area). The smaller the difference between maximum and nominal stress is (i.e. the stress con-
centration factor K;), the smaller the range of validity becomes. Since the stress distribution in a relatively
large region ahead of a notch tip depends on K; (Xu et al., 1995), such a range, given in terms of normalized
distance (» — ry)/p, decreases both with the increasing p and with the decreasing notch depth-ligament
width ratio.

When the opening angle is equal to or less than 90° (Fig. 5), Eq. (41) give predictions practically co-
incident with Creager—Paris’ solution, due to the small variability of 4, from 0° to 90° (Williams, 1952). By
increasing the opening angle (Fig. 6), it is evident that the expression for gy is substantially different from
Creager—Paris’ solution and that it is able to solve the lack of accuracy previously shown in Fig. 3.

By defining now an error index as

A% — (90)o—o.rem — (90)0—0 analytical 100

(90)p—o,rEM (35)

it is possible to check along the axis of symmetry the accuracy of the proposed formulation at different
distances from the notch tip. The results given in Table 4 indicate a considerable overall precision and the
independence of the errors from the type of notch. Hence, along the axis of symmetry, the proposed ap-
proach is able to deal with notches of different shapes regardless of their opening angle.

ok A A A4 ok A A

\/_/J\
200
P 20, }
B h 773 a 2a 17 | h2

L

B A A

Fig. 4. Models with lateral notches and square holes.
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Table 3
Properties of the notches subjected to mode I loading conditions
No. Type of notch Notch depth, Opening Notch tip Plate width, Ligament K, gros K, et
a (mm) angle, 2 (°) radius, p (mm) H (mm) width, 4 (mm)
1 Lateral 10 0 2.5 40 20 5.57 2.79
2 Lateral 10 0 2.5 60 40 5.33 3.56
3 Lateral 10 0 1.25 60 40 7.26 4.84
4 Lateral 10 0 0.5 60 40 11.12 7.41
5 Lateral 10 0 0.5 100 80 11.31 9.05
6 Lateral 10 45 2.5 60 40 5.33 3.55
7 Lateral 10 45 1.25 60 40 7.25 4.83
8 Lateral 10 45 0.5 60 40 11.09 7.40
9 Lateral 10 90 2.5 60 40 5.27 3.51
10 Lateral 10 90 1.25 60 40 7.08 4.72
11 Lateral 10 90 0.5 60 40 10.61 7.07
12 Lateral 10 90 0.5 30 10 12.42 4.14
13 Lateral 10 135 2.5 40 20 4.83 242
14 Lateral 10 135 2.5 60 40 4.50 3.00
15 Lateral 10 135 2.5 100 80 4.58 3.66
16 Lateral 10 135 0.5 30 10 9.66 322
17 Lateral 10 135 0.5 40 20 8.10 4.05
18 Lateral 10 135 0.5 60 40 7.57 5.04
19 Lateral 10 135 0.5 100 80 7.70 6.16
20 Hole 15 0 5 195 165 491 4.15
21 Hole 40 0 5 245 165 7.40 4.98
22 Hole 15 45 5 195 165 4.66 3.95
All models present a double symmetry (see Fig. 4).
1 ——O=0
Cp | o FEM
Omax ]
' —Eq. (41)
- .
1 = 12 -
) 40
- -
] vy (&
- R
0q,
0-1 ) ] 1 j
0.001 0.01 0.1 1 10 100
Distance from the tip / p

Fig. 5. A comparison between numerical data and analytical predictions (notch no. 10 in Table 1).

Out of the axis of symmetry, it is much more difficult to detail the degree of accuracy of the stress
solutions in a finite size plate, since the accuracy depends on the distance from the notch tip, the opening
angle, the notch radius and depth and, finally, on the ligament width. However, three models characterised
by different values of the opening angle 2o (2o = 45°, 90° and 135°, see Fig. 7a—c) enable us to understand

the main trends.
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1
GOp L o FEM
Gmax .
1 : . —Eg. (41)
] » 210
| - N\ -
0.5
- a0l 1™
- -
4{ v }’
- -
0-1 ) 1 ] ]
0.001 0.01 0.1 1 10 100

Distance from the tip / p

Fig. 6. A comparison between numerical data and analytical predictions (notch no. 18 in Table 1).

Table 4
Error indexes related to the twenty notches considered in Table 3
[4%]

No. ”# 0.1 0.2 0.3 0.4 0.5 0.7 1 3

1 —-0.50 -1.27 —-1.96 -2.48 -2.76 -2.60 -1.07 [€))]

2 -0.90 -2.01 -3.01 -3.82 —4.36 -4.71 -3.84 )

3 -0.47 -1.41 -2.41 -3.33 —4.08 -5.12 -5.65 (@)

4 —-0.02 -0.76 -1.50 -2.45 -3.32 —4.66 -5.96 -4.80
5 —-0.03 -0.77 -1.52 -2.49 -3.37 —4.75 —6.12 -5.47
6 1.07 1.14 0.99 0.76 0.62 1.31 2.00 (€8

7 1.63 1.75 1.53 1.21 0.87 0.42 0.33 [€))]

8 1.86 2.31 2.34 1.95 1.51 0.77 0.03 1.97
9 2.66 3.31 3.15 2.85 2.55 2.34 2.72 (D

10 2.88 3.51 3.38 3.04 2.52 1.81 1.25 (1)

11 3.06 3.90 3.74 3.26 2.74 1.83 0.90 1.34
12 2.94 2.80 223 1.86 1.67 1.81 2.7 (1)

13 2.70 2.30 1.43 0.81 0.28 —-0.11 —-0.06 441
14 2.61 2.11 1.11 0.36 -0.32 -0.92 -1.57 0.75
15 2.71 2.31 1.43 0.74 0.202 —-0.49 —-0.65 0.58
16 2.68 2.23 1.31 0.56 —-0.03 -0.71 -1.18 -1.07
17 2.69 2.21 1.26 0.50 0.12 —-0.84 —-1.40 1.79
18 2.56 4.81 6.32 7.51 8.13 8.21 6.15 (1)

19 1.73 3.59 5.06 6.48 7.49 8.64 9.09 (1)
20 2.13 2.33 2.00 1.15 0.57 —-0.42 -1.18 (1)

(1) zone affected by the nominal stress.

These models assure the constancy of the notch depth to notch tip radius ratio (a/p = 20) as well as the
constancy of the ligament width to notch depth ratio (2/a = 4.0).

All stress components are normalised with respect to the maximum oy stress component (present at the
notch tip) and plotted along a semi-circular arc of which the centre is located at the origin of the (r, 0)
coordinate system: the arc intersects the axis of symmetry either at a distance 3p from the notch tip (Fig. 7)
or at a distance p from the notch tip (Fig. 7c).
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Fig. 7. Stress fields plotted along a circular arc centered on the origin of the (r,0) system.

In the case with 2a = 135° (Fig. 7a, all stress components are in satisfactory agreement with the finite
element results along the entire arc of interest, from the notch axis to the notch flank.

The accuracy decreases when the opening angle decreases (Fig. 7b), but it remains very good, at least
for the g, stress component despite it being strongly reduced with respect to the maximum value present
at the notch tip. An increase of accuracy can be obtained only by reducing the distance from the notch
tip. This reduction becomes absolutely necessary for the model with 2o = 45° (Fig. 7c), where it is evi-
dent that predictions are good for ¢, and 7,9 only for 0 < 60° and not in correspondence of the notch
flank.
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Fig. 9. “Welded-like” geometry.

Further numerical analyses carried out of axis showed that

e the accuracy of the analytical solution tends to increase when the ligament width to notch depth ratio

increases, and
o the accuracy decreases when the notch depth to notch tip radius decreases, the minimum value consid-

ered by us being a/p = 4.0.
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Fig. 10. Stress fields along the bisector of the asymmetric notches shown in Figs. 8 and 9.
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Fig. 11. Local stress parameters along the notch edge.
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In order to verify also the accuracy of the mode II solution, the authors think that its investigation alone
has no practical application. An effective application field, where modes I and II are present together, is the
linear elastic field close to the tip of sloped notches or shoulder fillets. Accurate investigations on sharp V-
shaped notches were carried out by Chen (1995) by using the body force method. Even the geometry close
to the toe of a weldment can be efficiently investigated as an open notch with a small notch tip radius
(Lazzarin and Tovo, 1998) and one of the free edges is usually aligned with the loading direction as well as

in the shoulder fillets.

In these geometries, the external-loading direction is not perpendicular to the bisector of the notch and
the resulting stress field is the superposition of a mode I (symmetric) and a mode II (skew-symmetric)
contributions (Carpenter, 1985). Three reference geometries are considered here: a U-shaped notch slanted
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by 45° with respect to the free edge and the loading direction (Fig. 8a), a shoulder fillet having a opening
angle equal to 90° (Fig. 8b) and, finally, a model with a notch with a 135° opening angle, defined as
“welded-like” geometry (Fig. 9). In all cases, the gross section and the net section are equal to 60 and 40

mm, respectively. The notch tip radius is equal to 0.5 mm.

When both loading modes are present, their contribution can be separated only along the bisector where
g¢ and o, depend on the symmetric mode while 7,4 is related to the skew-symmetric mode. The resulting
stress fields along the bisector are shown in Fig. 10a—c where theoretical distributions are compared with
finite element results. It is clear that the mode I stress field distribution follows the considerations already
reported concerning symmetric notches; on the other hand, the improvement given by the new approach in
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Fig. 12. Stress fields along the free edge of the asymmetric notches.

mode II (depicted by the shear stress distribution) accuracy is even more visible.
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5. Effect of the approximations on the principal stress along the free edge

Under mixed load conditions, along any direction different from the bisector, the overall stress field
should be obtained by combining the two elementary modes. Stresses along the main plate free edge are of
particular interest since it is common practice to estimate them by means of direct strain gauge measure-
ments.

In order to properly evaluate the stress field parameters along the notch free edge (where the ¢, and 1,
stresses should be equal to zero), the stress field indexes are translated from the (7, 0) coordinate system to
the local (u,v) coordinate system (see Fig. 11). By applying the Cauchy theorem, one obtains

g, g,
o, ¢ =[TIK a9 (56)
Tuw Tr0

where matrix 7 is as follows:

cos?y sin’ y 2sinycosy
7] = sin® y cos?y —2sinycosy (57)
—sinycosy sinycosy cos?y—sin’y

The principal stress parallel to the free edge (i.e. the g, stress component) is plotted in Fig. 12a—c for the
three models already shown in Figs. 8 and 9. Such a stress is given versus a curvilinear coordinate ¢ having
the origin located at the notch tip.

A remarkable difference is evident in the three geometries where the opening angle changes from 0° to
135°. In order to understand the reason for this, it is useful to compare the actual free edge shape used in
analytical solutions and in finite element analyses. The profile of the finite element models is made of
straight lines and arc of circles. In contrast, the analytical formulation is based on a continuous curve,
which corresponds to a parabola in the U-notch case (2o = 0) and to a hyperbola-like profile in all the other
cases (2o # 0). As a consequence, the free edge of the numerical models is different from the free edge used
in the analytical solution (see Fig. 12a—c). The smaller the opening angle, the greater becomes the difference.
When, due to the mode II contribution, the maximum principal stress moves away from the bisector and
becomes located in the zone where the arc of cycle is tangent to the straight line, the errors become evident

o, 1
O max, bis. T o FEM p=0.5 mm
1 ¢ FEM p=2.5 mm
- <7
-
-
- X —>
0.1 T T T
0.01 0.1 1 10 &/p 100

Fig. 13. A comparison along the free edge between numerical data and analytical predictions for two “welded-like” geometry.
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Fig. 14. Stress fields along the free edge of the asymmetric notches.

(Fig. 12a). In the presence of greater opening angles, the agreement is much more satisfactory, in particular
in the welded-like geometry.

The greater the opening angle and the distance from the notch tip, the smaller the angle y and, conse-
quently, the easier the applicability of the boundary conditions provided by Egs. (8a,b), (21) and (22) to the

finite size notches.
To be more precise, a further numerical investigation has also considered a 2.5 mm notch tip radius in

the welded-like geometry. The resulting principal stress component, plotted along the main plate free edge
by using a double-logarithmic diagram, is shown in Fig. 13. Differences between numerical solution and
analytical results are present, once again, in the zone of geometrical transition where the difference between
the analytical free edge and the actual free edge is not negligible. However, at distances from the tip
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Fig. 15. Stress field along the free edge of an elliptic hole in an infinite plane.

comparable or greater than the notch radius, the agreement is very strong. From a practical point of view,
the description of this more distant zone is very useful, because experimental investigations (usually based
on strain gauge measurements) are performed at a distance from the tip where the actual weldment ge-
ometry is highly affected by welding process irregularities. Therefore, the proposed approach can be used to
estimate the whole linear elastic stress field at the weldment toes starting from experimental values deter-
mined relatively far away from the notch tip. This theoretical framework shows that the local stress dis-
tribution is clearly non linear, as is widely acknowledged, and it is the superposition of a symmetric and
skew-symmetric component, so that two parameters must be evaluated for an accurate estimation of the
stress field in the neighbourhood of the notch tip. It is important to note that the local stress distribution
characterises a reduced zone close to the tip and the zone size can be easily estimated by comparing the free
edge stress gradient with respect to the nominal stress value. Therefore experimental measurements along
the free edge should take into account whether measured strains (or stresses) are within the local gradient
affected zone or not.

Further analyses have considered the stress components g, and t,,. along the free edge. Theoretically
these components should be null along the notch free edge: Thus their predicted values give an important
information about the accuracy of the approximate solution proposed herein. Fig. 14 plots o, and 1, for
the same geometries already shown in Fig. 12. It is evident that the degree of accuracy increases with in-
creasing notch opening angle; likewise for the stress component g,.

Finally, the new solution is used to predict the principal stress along the free edge of an ellipse and the
approximate results are compared in Fig. 15 with the exact solution provided by Inglis (1913). The ellipse,
subjected to mixed load conditions, presents the major axis/minor axis ratio (a/b) equal to 10. When
a/b = 10, the new equations are demonstrated to be suitable for providing a satisfactory agreement by setting
all parameters with respect to the 2o = 0 case. This does not hold true when a/b is much smaller than 10.

6. Conclusions

In the present work the problem of the linear elastic stress field close to the tip of V-shaped notches has
been addressed. It has been highlighted that several analytical solutions have already been proposed in
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literature, but the available solutions are not applicable to notches having a large opening angle and a small
notch tip radius. Such a specific problem has already been addressed by the authors, but their previous
analytical solution showed a lack of accuracy under particular geometrical circumstances. Hence such a
solution has been revised and its accuracy has been strongly improved by adding a component in the
polynomial arrangement of potential functions. Consequently, also boundary conditions have been
adapted by introducing proper additional conditions.

The result has been an explicit formulation of linear elastic stress components. The formulas have first
been compared with Creager—Paris’ solution for blunt cracks, as well as with other solutions valid for
cracks and sharp corners. Due to the particular choice of the analytical stress functions, it turned out that
some widely used equations can be seen as particular cases of the general approach proposed here.

The accuracy of the new solutions was verified by comparing theoretical stress fields and finite element
results pertaining to a large set of plane notched models. Non-symmetric geometries were also considered.
This comparison is helpful in order to investigate the applicability to cases of engineering interest char-
acterised by the presence of superimposed mode I and II loading conditions.

In the authors’ opinion, the overall correctness, as well as the improvement in the accuracy compared to
previous closed-form solutions, has been significant.

All equations for mode I and II have been written also by using a commercial code. If requested, the
corresponding author (plazzarin@gest.unipd.it) will send the program to all interested readers.
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